Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Struct Biotechnol J ; 20: 6033-6040, 2022.
Article in English | MEDLINE | ID: covidwho-2264120

ABSTRACT

To assess the frequency of SARS-CoV-2 infection in the general population, we searched over 64 million heavy chain antibody sequences from healthy unvaccinated, healthy BNT162b2 vaccinated and COVID-19 patient repertoires for sequences similar to 11 previously reported enhancing antibodies. Although the distribution of sequence identities was similar in all three groups of repertoires, the COVID-19 and healthy vaccinated hits were significantly more clonally expanded than healthy unvaccinated hits. Furthermore, among the tested hits, 17 out of 94 from COVID-19 and 9 out of 59 from healthy vaccinated, compared with only 2 out of 96 from healthy unvaccinated, bound to the enhancing epitope. A total of 9 of the 28 epitope-binding antibodies enhanced ACE2 receptor binding to the spike protein. Together, this study revealed that infection enhancing-like antibodies are far more frequent in COVID-19 patients or healthy vaccinated donors than in healthy unvaccinated donors, but a reservoir of potential enhancing antibodies exists in healthy donors that could potentially mature to actual enhancing antibodies upon infection.

2.
Front Med (Lausanne) ; 9: 952697, 2022.
Article in English | MEDLINE | ID: covidwho-2099173

ABSTRACT

Currently, neutralizing antibody and vaccine strategies have been developed by targeting the SARS-CoV-2 strain identified during the early phase of the pandemic. Early studies showed that the ability of SARS-CoV-2 RBD or NTD antibodies to elicit infection enhancement in vivo is still controversial. There are growing concerns that the plasma and neutralizing antibodies from convalescent patients or people receiving vaccines mediate ADE of SARS-CoV-2 variants infections in immune cells. Here, we constructed engineered double-mutant variants containing an RBD mutation and D614G in the spike (S) protein and natural epidemic variants to gain insights into the correlation between the mutations in S proteins and the ADE activities and tested whether convalescent plasma and TOP10 neutralizing antibodies in our laboratory mediated the ADE effects of these SARS-CoV-2 variants. We found that one out of 29 convalescent plasma samples caused the ADE effect of pandemic variant B.1.1.7 and that the ADE effect of wild-type SARS-CoV-2 was not detected for any of these plasma samples. Only one antibody, 55A8, from the same batch of convalescent patients mediated the ADE effects of multiple SARS-CoV-2 variants in vitro, including six double-mutant variants and four epidemic variants, suggesting that ADE activities may be closely related to the antibody itself and the SARS-CoV-2 variants' S proteins. Moreover, the ADE activity of 55A8 depended on FcγRII on immune cells, and the introduction of LALA mutations at the Fc end of 55A8 eliminated the ADE effects in vitro, indicating that 55A8LALA may be a clinical drug used to prevent SARS-CoV-2 variants. Altogether, ADE may occur in rare convalescent patients or vaccinees with ADE-active antibodies who are then exposed to a SARS-CoV-2 variant. These data suggested that potential neutralizing antibodies may need to undergo ADE screening tests for SARS-CoV-2 variants, which should aid in the future design of effective antibody-based therapies.

SELECTION OF CITATIONS
SEARCH DETAIL